

## INDIAN SCHOOL AL WADI AL KABIR *Sample Question Paper* First Rehearsal Examination (2022-23) **Sub: MATHEMATICS STANDARD (041)**

Date: 07-11-2022 Class: X Time Allowed: 3 hours Maximum marks: 80

## **General Instructions**

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Questions of 5 marks, 2 Questions

of 3 marks and 2 Questions of 2 marks has been provided.

An internal choice has been provided in the 2marks questions of Section E

8. Draw neat figures wherever required. Take  $\pi = 22/7$  wherever required if not stated

## **SECTION A**

| Section A consists of 20 questions of 1 mark each. |                                                                                                                |                                                                                       |   |                |   |               |   |                |  |  |  |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---|----------------|---|---------------|---|----------------|--|--|--|
| Q.1.                                               | If tl                                                                                                          | If the HCF of 65 and 117 is expressible in the form 65m - 117, then the value of m is |   |                |   |               |   |                |  |  |  |
|                                                    | Α                                                                                                              | 4                                                                                     | В | 2              | C | 1             | D | 3              |  |  |  |
| Q.2.                                               | If the sum of the zeroes of the quadratic polynomial $kx^2 + 2x + 3k$ is equal to their product, then k equals |                                                                                       |   |                |   |               |   |                |  |  |  |
|                                                    | Α                                                                                                              | $\frac{1}{3}$                                                                         | В | $-\frac{1}{3}$ | С | $\frac{2}{3}$ | D | $-\frac{2}{3}$ |  |  |  |

| Q.3.* | Th   | The 4th term from the end of an AP -11, -8, -5, 49 is                                             |        |                              |        |                              |       |                              |  |  |  |  |
|-------|------|---------------------------------------------------------------------------------------------------|--------|------------------------------|--------|------------------------------|-------|------------------------------|--|--|--|--|
|       | Α    | 37                                                                                                | В      | 40                           | С      | 43                           | D     | 58                           |  |  |  |  |
| Q.4.  | For  | For which value (s) of p, will the lines represented by the following pair of linear equations be |        |                              |        |                              |       |                              |  |  |  |  |
|       | par  | parallel. $3x - y - 5 = 0$ ; $6x - 2y - p = 0$                                                    |        |                              |        |                              |       |                              |  |  |  |  |
|       | A    | all real values<br>except 10                                                                      | В      | 10                           | с      | 5<br>2                       | D     | $\frac{1}{2}$                |  |  |  |  |
| Q.5.  | Th   | The LCM of smallest two -digit composite number and smallest composite number is                  |        |                              |        |                              |       |                              |  |  |  |  |
|       | Α    | 12                                                                                                | В      | 4                            | С      | 20                           | D     | 44                           |  |  |  |  |
| Q.6.  | Ac   | lie is thrown once. T                                                                             | he pi  | obability of getting         | g a ni | umber which is not a f       | acto  | r of 36 is                   |  |  |  |  |
|       | A    | $\frac{1}{6}$                                                                                     | В      | $\frac{1}{3}$                | с      | $\frac{1}{5}$                | D     | $\frac{5}{6}$                |  |  |  |  |
| Q.7.  | Th   | e quadratic equation                                                                              | $2x^2$ | $-\sqrt{5}x + 1 = 0$ has     |        |                              |       |                              |  |  |  |  |
|       | A    | two distinct real roots                                                                           | В      | two equal real roots         | с      | no real roots                | D     | more than two real roots     |  |  |  |  |
| Q.8.  | The  | e coordinates of the j                                                                            | point  | which divides the            | line s | segment joining the po       | oints | (4, -3) and (8,5) in         |  |  |  |  |
|       |      |                                                                                                   |        |                              |        |                              |       |                              |  |  |  |  |
|       | Α    | (-3, -7)                                                                                          | В      | (-7, -3)                     | С      | (3, 7)                       | D     | (7, 3)                       |  |  |  |  |
| Q.9.  | D a  | and E are respectivel<br>A = 3 cm $BC = 7.5$ cm                                                   | y the  | points on the sides          | AB     | and AC of a triangle A       | ABC   | such that $AD = 2$ cm,       |  |  |  |  |
|       | DL   | 0 = 3  cm,  BC = 7.3  cm                                                                          |        |                              | engu   |                              | 1     |                              |  |  |  |  |
|       | Α    | 2.5                                                                                               | В      | 3                            | с      | 5                            | D     | 6                            |  |  |  |  |
| Q.10. | If s | $\sin \theta = \frac{a}{b}$ , then $\tan \theta$                                                  | is ec  | qual to                      |        |                              |       |                              |  |  |  |  |
|       | A    | $\frac{b}{\sqrt{a^2 + b^2}}$                                                                      | В      | $\frac{b}{\sqrt{b^2 - a^2}}$ | с      | $\frac{a}{\sqrt{a^2 - b^2}}$ | D     | $\frac{a}{\sqrt{b^2 - a^2}}$ |  |  |  |  |

| Q.11. | The angle of elevation of the sun, when the shadow of a pole h meters high is $\sqrt{3}$ h is                                                        |                                                           |               |                                          |       |                             |       |                             |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------|------------------------------------------|-------|-----------------------------|-------|-----------------------------|--|--|--|
|       | A                                                                                                                                                    | 30°                                                       | В             | 45°                                      | С     | 60°                         | D     | 90°                         |  |  |  |
| Q.12. | In triangles PQR and MST, $\angle P = 55^{\circ}$ , $\angle Q = 25^{\circ}$ , $\angle M = 100^{\circ}$ and $\angle S = 25^{\circ}$ , then            |                                                           |               |                                          |       |                             |       |                             |  |  |  |
|       | A                                                                                                                                                    | $\Delta$ TSM ~ $\Delta$ PQR                               | в             | $\Delta$ TSM ~ $\Delta$ QPR              | с     | $\Delta$ MST ~ $\Delta$ QRP | D     | $\Delta$ TMS ~ $\Delta$ RQP |  |  |  |
| Q.13. | In the figure, O is the centre of a circle, PQ is a chord and the tangent PR at P makes an angle of 50° with PQ, then the measure of $\angle$ POQ is |                                                           |               |                                          |       |                             |       |                             |  |  |  |
|       | Α                                                                                                                                                    | 80°                                                       | В             | 100°                                     | С     | 90°                         | D     | 75°                         |  |  |  |
| Q.14. | In a<br>not                                                                                                                                          | a survey it is found the possessing the vehic             | hat e<br>cle? | very fifth person po                     | osses | s a vehicle, what is the    | e pro | bability of a person        |  |  |  |
|       | A                                                                                                                                                    | 0                                                         | В             | $\frac{1}{5}$                            | с     | $\frac{4}{5}$               | D     | 1                           |  |  |  |
| Q.15. | If 3                                                                                                                                                 | $Bx = \sec \theta \text{ and } \frac{3}{x} = \tan \theta$ | n $\theta$ ,  | then $(x^2 - \frac{1}{x^2})$ is equation | qual  | to                          |       |                             |  |  |  |
|       | Α                                                                                                                                                    | 3                                                         | В             | 1                                        | С     | $\frac{1}{9}$               | D     | 9                           |  |  |  |
| Q.16. | Eva                                                                                                                                                  | aluate: $\frac{2 \tan 45^\circ \times co}{\sin 30^\circ}$ | s 60°         | -                                        |       |                             |       |                             |  |  |  |
|       | A                                                                                                                                                    | $2\sqrt{2}$                                               | В             | 2                                        | с     | 1                           | D     | $\frac{1}{2}$               |  |  |  |

| Q.17. | In the given figure, XY    QR and $\frac{PX}{XQ} = \frac{PY}{YR} = \frac{1}{2}$ , then |         |                       |             |                             |                        |                  |                        |            |                |                    |          |
|-------|----------------------------------------------------------------------------------------|---------|-----------------------|-------------|-----------------------------|------------------------|------------------|------------------------|------------|----------------|--------------------|----------|
|       | Q X R                                                                                  |         |                       |             |                             |                        |                  |                        |            |                |                    |          |
|       | A                                                                                      | 2       | XY = QR               | В           | $XY = \frac{1}{3}$          | QR                     | с                | $XY = \frac{2}{3}Q$    | )R         | D              | $XY = \frac{1}{2}$ | QR       |
| Q.18. | Fin                                                                                    | d the   | upper limit of        | the n       | nedian class                | for the                | given            | frequency dis          | stributio  | on:            |                    |          |
|       |                                                                                        |         | Class                 |             | 0 - 5                       | 5 -                    | 10               | 10 - 15                | 15 - 2     | 20             | 20 - 25            |          |
|       |                                                                                        |         | Frequency             | r           | 8                           | 1                      | 0                | 19 25                  |            |                | 8                  |          |
|       | A                                                                                      |         | 5                     | В           | 10                          |                        | с                | 15                     |            | D              | 20                 |          |
| Q.19. | DI                                                                                     | RECT    | TION: In quest        | tion 1      | numbers 19                  | and 20                 | , a stat         | ement of Ass           | ertion (   | ( <b>A</b> ) i | s followed by      | a        |
|       | stat                                                                                   | temen   | t of <b>Reason (R</b> | <b>:</b> ). |                             |                        |                  |                        |            |                |                    |          |
|       | Che                                                                                    | oose tl | he correct option     | on          |                             |                        |                  |                        |            |                |                    |          |
|       | Sta                                                                                    | temen   | at A (Assertion       | ): PA       | A and PB are                | e two ta               | angent           | s to a circle w        | ith cent   | tre C          | ) such that        |          |
|       | Sta                                                                                    | tomon   | nt R (Reason).        | ZA<br>The   | NOB = 110°,<br>length of tw | then Z                 | APB :<br>ents dr | = 90°.<br>rawn from an | externa    | 1 no           | int are equal      |          |
|       | Siu                                                                                    | iemen   | n (Neuson).           | The         | length of tw                | o tang                 | ciits ui         |                        | слетна     | n po           | int are equal.     |          |
|       |                                                                                        | (a) B   | oth Assertion (       | (A) a       | nd Reason (                 | R) are                 | true ai          | nd Reason (R)          | ) is the o | corre          | ect explanatio     | n of     |
|       |                                                                                        | А       | ssertion (A)          |             |                             |                        |                  |                        |            |                |                    |          |
|       |                                                                                        | (b) B   | oth Assertion (       | (A) a       | nd Reason (                 | R) are                 | true ar          | nd Reason (R)          | is not t   | the c          | correct explan     | ation of |
|       |                                                                                        | As      | ssertion (A)          | truo        | hut raacon (                | $\mathbf{D}$ ) is form | lao              |                        |            |                |                    |          |
|       |                                                                                        | (d) A   | ssertion (A) is       | false       | but reason (                | (R) is te              | rue.             |                        |            |                |                    |          |
|       |                                                                                        | (-)     |                       |             |                             | (,,,,,,,,,,            |                  |                        |            |                |                    |          |

| Q.20.* | Statement A (Assertion): If the height of a cone is 24 cm and diameter of the base is 14 cm, then the                                                                                                                                  |  |  |  |  |  |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|        | slant height of the cone is 25 cm.                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|        | Statement R (Reason): If r be the radius and h be the slant height of the cone, then slant height                                                                                                                                      |  |  |  |  |  |  |  |  |
|        | is $\sqrt{h^2 + r^2}$                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|        | <ul> <li>(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A)</li> <li>(b) Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of</li> </ul> |  |  |  |  |  |  |  |  |
|        | Assertion (A)                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|        | (c) Assertion (A) is true but reason (R) is false.                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|        | (d) Assertion (A) is false but reason (R) is true.                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|        | SECTION B                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|        | Section B consists of 5 questions of 2 marks each.                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| Q.21.  | Solve: $99x + 101y = 499$ ; $101x + 99y = 501$                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
|        | OR                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|        | ABCDE is a pentagon with BE    CD and BC    DE, BC is perpendicular to CD If the perimeter of ABCDE is 21 cm, find x and y.                                                                                                            |  |  |  |  |  |  |  |  |
|        |                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|        | 3 cm<br>B E                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|        | x-y 5 cm                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
|        | $C \xrightarrow{x+y} D$                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| Q.22.  | Using empirical relationship, find the value of mode if the mean and median of the distribution are 14 and 15 respectively.                                                                                                            |  |  |  |  |  |  |  |  |

| Q.23. | If the sides AB, BC and CA of $\Delta$ ABC touch a circle at F, D and E respectively, then prove that                                                              |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | $AE + BD + CE = \frac{1}{(AB + BC + CA)}$                                                                                                                          |
|       | $AF + BD + CE - \frac{1}{2}(AB + BC + CA)$                                                                                                                         |
|       |                                                                                                                                                                    |
|       | OR                                                                                                                                                                 |
|       | TP is a tangent to the circle with centre O. If $\angle$ TOQ = 120°, find the diameter of the circle when                                                          |
|       | OT = 10  cm.                                                                                                                                                       |
|       |                                                                                                                                                                    |
| Q.24  | A box contains 12 balls of which some are red in colour. If 6 more red balls are put in the box and a                                                              |
|       | ball is drawn at random, the probability of drawing a red ball double than what it was before. Find                                                                |
|       | the number of red balls in the bag.                                                                                                                                |
| Q.25. | In the given fig, D and E are points on sides AB and CA of $\triangle$ ABC such that $\triangle$ B = $\angle$ AED.<br>Show that $\triangle$ ABC ~ $\triangle$ AED. |
|       | DEE                                                                                                                                                                |
|       | в∠С                                                                                                                                                                |
|       | SECTION C                                                                                                                                                          |
|       | Section C consists of 6 questions of 3 marks each.                                                                                                                 |
| Q.26. | The length, breadth and height of a room are 8 m 50 cm, 6 m 25 cm and 4 m 75 cm respectively.                                                                      |
|       | Find the length of the longest rod that can measure the dimensions of the room exactly.                                                                            |

| Q.27.   | From a point on a bridge across a river, the angles of depression of the banks on opposite sides of the river are 30° and 45° respectively. If the bridge is at a height of 3 m from the banks, then find the                                                       |  |  |  |  |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|         | width of the river.                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|         | OR                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|         | The angles of depression of the top and bottom of a building 50 metres high as observed from the top of a tower are $30^{\circ}$ and $60^{\circ}$ , respectively. Find the height of the tower and also the horizontal distance between the building and the tower. |  |  |  |  |  |  |  |  |  |
| Q.28.   | If $\alpha$ and $\beta$ are the zeroes of the quadratic polynomial $4x^2 + 4x + 1$ , then form a quadratic polynomial whose zeroes are $2\alpha$ and $2\beta$ .                                                                                                     |  |  |  |  |  |  |  |  |  |
| Q.29. * | Find the number of multiples of 9 lying between 300 and 700.                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
| Q.30.   | Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
| Q.31    | Solve the following pair of linear equations graphically: $x - y = 1$ , $2x + y = 8$ .                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |
|         | Also find the co-ordinates of the points where the lines represented by the above equation intersect                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
|         | y – axis.                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |
|         | OR                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
|         | A railway half ticket cost half the full fare but the reservation charges are the same on a half ticket as                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
|         | on a full ticket. One reserved first-class ticket costs ₹2530. One reserved first-class ticket and one                                                                                                                                                              |  |  |  |  |  |  |  |  |  |
|         | reserved first-class half ticket from stations A to B costs ₹ 3810. Find the full first-class fare from                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
|         | stations A to B and also the reservation charges for a ticket                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|         | SECTION D                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |
|         | Section D consists of 4 questions of 5 marks each.                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| Q.32.   | In a rectangular field of dimension 50 m x 40 m, a rectangular pond is constructed so that the area of                                                                                                                                                              |  |  |  |  |  |  |  |  |  |
|         | grass strip of uniform breadth surrounding the pond would be 1184 $m^2$ . Find the length and breadth                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
|         | of the pond. *                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
|         | OR                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |

|         | Solve for x: $\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$ ; where $a + b + x \neq 0$ and $a, b, x \neq 0$                                                                                                                                                                                |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q.33.   | Two poles of height a and b ( $b > a$ ) are c metres apart. Prove that the height h (in metres) of the point                                                                                                                                                                                            |
|         | of intersection of the lines joining the top of each pole to the foot of the opposite pole is $\frac{ab}{a+b}$ .                                                                                                                                                                                        |
|         |                                                                                                                                                                                                                                                                                                         |
| Q.34.   | Prove that $\frac{\tan\theta}{1-\tan\theta} - \frac{\cot\theta}{1-\cot\theta} = \frac{\cos\theta + \sin\theta}{\cos\theta + \sin\theta}$                                                                                                                                                                |
| Q.35. * | A circus tent is in the shape of a cylinder surmounted by a conical top of same diameter. If their common diameter is 56 m, the height of cylindrical part is 6 m and the total height of the tent above the ground is 27 m, find the area of canvas used to make the tent. (Use $\pi = \frac{22}{7}$ ) |
|         | OR                                                                                                                                                                                                                                                                                                      |
|         | A solid wooden toy is in the form of a hemi-sphere surmounted by a cone of same radius. The radius                                                                                                                                                                                                      |
|         | of hemi-sphere is 3.5cm and the total wood used in the making of toy is $166 \frac{5}{6} cm^3$ . Find the height                                                                                                                                                                                        |
|         | of the toy. Also, find the cost of painting the hemi-spherical part of the toy at the rate of                                                                                                                                                                                                           |
|         | ₹10 per cm <sup>2</sup>                                                                                                                                                                                                                                                                                 |
|         |                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                                                                                                                                                                                                                         |

|       |                                                                                                      | SECTION E                                                                                 |        |  |  |  |  |  |  |  |
|-------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------|--|--|--|--|--|--|--|
|       |                                                                                                      | Case study- based questions are compulsory.                                               |        |  |  |  |  |  |  |  |
| Q.36. | Case stu                                                                                             | dy-based 1                                                                                |        |  |  |  |  |  |  |  |
|       | Archery                                                                                              | is the sport, or skill of using a bow to shoot arrows. Figure depicts an archery target n | narked |  |  |  |  |  |  |  |
|       | with its five scoring regions from the centre outwards as Gold, Red, Blue, Black and White. The      |                                                                                           |        |  |  |  |  |  |  |  |
|       | diameter of the region representing Gold score is 21 cm and each of the other bands is 10.5 cm wide. |                                                                                           |        |  |  |  |  |  |  |  |
|       |                                                                                                      | WHITE<br>BLACK<br>DLUE<br>GOLD                                                            |        |  |  |  |  |  |  |  |
|       | Use the a                                                                                            | bove information and figure to answer the questions that follow:                          |        |  |  |  |  |  |  |  |
|       | (i)                                                                                                  | What is the radius of the region representing gold and red scoring region?                | (1m)   |  |  |  |  |  |  |  |
|       | (ii)                                                                                                 | What is the diameter of the region representing gold, red and blue scoring region?        | (1m)   |  |  |  |  |  |  |  |
|       | (iii)                                                                                                | What is the diameter of the archery target?                                               | (2m)   |  |  |  |  |  |  |  |
|       |                                                                                                      | OR                                                                                        |        |  |  |  |  |  |  |  |
|       |                                                                                                      | What is the area of the region representing red scoring area?                             |        |  |  |  |  |  |  |  |
| Q.37. | Case stu                                                                                             | dy-based 2                                                                                |        |  |  |  |  |  |  |  |
|       | In a ciner                                                                                           | ma hall, people are seated at a distance of 1m from each other, to maintain the social    |        |  |  |  |  |  |  |  |
|       | distance                                                                                             | due to CORONA pandemic. let three people sit at points P, Q and R whose coordinate        | es are |  |  |  |  |  |  |  |
|       | (6, -2) (9                                                                                           | ,4) and (10,6) respectively.                                                              |        |  |  |  |  |  |  |  |
|       |                                                                                                      |                                                                                           |        |  |  |  |  |  |  |  |

|       | Based on the abo                                                                      | ve informati   | on answer    | the follow  | ing:        |          |        |     |  |  |  |
|-------|---------------------------------------------------------------------------------------|----------------|--------------|-------------|-------------|----------|--------|-----|--|--|--|
|       | (i) What is the distance between P and R?                                             |                |              |             |             |          |        |     |  |  |  |
|       | (ii) What is the midpoint of the line segment joining P and R?                        |                |              |             |             |          |        |     |  |  |  |
|       | (iii) What is the ratio in which Q divides the line segment joining P and R?          |                |              |             |             |          |        |     |  |  |  |
|       | OR                                                                                    |                |              |             |             |          |        |     |  |  |  |
|       | If a point S, lying on the straight-line joining Q and R divides the distance between |                |              |             |             |          |        |     |  |  |  |
|       | them                                                                                  | in the ratio o | of 1:2 then  | find the co | ordinates o | of S.    |        |     |  |  |  |
| Q.38. | Case study-based 3 100m RACE                                                          |                |              |             |             |          |        |     |  |  |  |
|       | A stopwatch was used to find the time that it took a group of students to run 100 m.  |                |              |             |             |          |        |     |  |  |  |
|       | Time (in sec)                                                                         | 0 - 20         | 20 - 40      | 40 - 60     | 60 - 80     | 80 - 100 |        |     |  |  |  |
|       | No. of students                                                                       | 8              | 10           | 13          | 6           | 3        |        | - 1 |  |  |  |
|       | (i) What                                                                              | is the upper   | limit of the | e modal cla | ass?        | (1m)     |        |     |  |  |  |
|       | (ii) What                                                                             | is the sum o   | f lower lin  | nits of med | ian class a | nd modal | 19 bar | _   |  |  |  |
|       | class? (1m)                                                                           |                |              |             |             |          |        |     |  |  |  |
|       | (iii) Estimate the mean time taken by a student to finish the race.                   |                |              |             |             |          |        |     |  |  |  |
|       |                                                                                       |                | OR           |             |             | (2m)     |        |     |  |  |  |
|       | Find t                                                                                | he mode of t   | the above of | lata.       |             |          |        |     |  |  |  |

|                                                                                   | Answers( *indicates topics not included in the First Rehearsal Exam) |      |                   |      |                             |      |                               |  |  |  |  |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------|------|-------------------|------|-----------------------------|------|-------------------------------|--|--|--|--|
| Q.1                                                                               | В                                                                    | Q.2  | D                 | Q.3  | В                           | Q.4  | А                             |  |  |  |  |
| Q.5                                                                               | С                                                                    | Q.6  | А                 | Q.7  | С                           | Q.8  | D                             |  |  |  |  |
| Q.9                                                                               | В                                                                    | Q.10 | D                 | Q.11 | А                           | Q.12 | А                             |  |  |  |  |
| Q.13                                                                              | В                                                                    | Q.14 | С                 | Q.15 | С                           | Q.16 | В                             |  |  |  |  |
| Q.17                                                                              | В                                                                    | Q.18 | С                 | Q.19 | d                           | Q.20 | а                             |  |  |  |  |
| Q.21                                                                              | x = 3, y = 2                                                         | Q.22 | 17                | Q.23 | 10 cm.                      | Q.24 | 3                             |  |  |  |  |
|                                                                                   | x = 5, y = 0                                                         |      |                   |      |                             |      |                               |  |  |  |  |
| Q.26                                                                              | 25 cm                                                                | Q.27 | $3(\sqrt{3}+1)$ m | Q.28 | $x^2 + 2x + 1$              | Q.29 | 44                            |  |  |  |  |
| Q.31                                                                              | (1, 4)                                                               | Q.32 | 34m,24m           | Q.35 | 4136 <i>m</i> <sup>2</sup>  | Q.36 | (i) 21 cm (ii) 63cm           |  |  |  |  |
|                                                                                   | ₹2500, ₹30                                                           |      | x = -a, -b        |      | 6cm, ₹ 770                  |      | (iii) 105 cm,                 |  |  |  |  |
|                                                                                   |                                                                      |      |                   |      |                             |      | 1039.5 <i>cm</i> <sup>2</sup> |  |  |  |  |
| Q.37 (i) $4\sqrt{5}$ units (ii) (8, 2) (iii) 3: 1, $(\frac{28}{3}, \frac{14}{3})$ |                                                                      |      |                   | Q.38 | (i) 60 (ii) 80 (iii) 43, 46 |      |                               |  |  |  |  |